L9. Drug Permeation Through Biological Barriers

May 3, 2018

1. Lipid and Lipid Membrane

Lipids

Phospholipid: an amphiphilic molecule with a hydrophilic head and 1~2 hydrophobic tails.

Head: 0.5 nm²

Length: ~ 2.5 nm

Phosphatidylcholine (PC, +/-); phosphatidylserine (PS, -); phosphatidylethanolamine (PE, +/-); cholesterol; sphingomyelin (SM), glycolipids, etc.

Lipid Self-Assemblies

Lipid bilayer: 4~5 nm

Lipid vesicle (liposome): 50 nm ~ 10 μm

1. Lipid and Lipid Membrane

 Lipids & lipid assemblies are now "star" research topic in various fields (biology, chemistry, physics, materials sciences, engineering etc).

It's hyped as a third biological building block after protein and nucleic acid.

- 40 years ago, lipids were just a component of cell membrane, "A sausage casing with the interesting stuff inside".

Ordinary structure, trivial structure, cannot offer any fancy functions such as folding-unfolding, self-duplication, and transportation of O_2 , etc.

2. Dynamic Properties of Lipids in the Membrane

(1) Translational diffusion

Diffuse laterally from one spot to another spot

 $D \approx 1 \mu m^2/s$

Fluorescence recovery after photobleaching (FRAP)

2. Dynamic Properties of Lipids in the Membrane

(2) Transmembrane diffusion (flip-flop)

Diffuse from one leaflet to another leaflet

(3) Cross-membrane diffusion

5) Rocking

Diffuse from one membrane to another membrane

(4) Rotation

All these dynamic properties together determine membrane permeability.

3. Permeation Through Lipid Membranes

(1) Non-charged molecules (non-electrolyte)

Permeability: P or k_s

$$P = k_{s} = \frac{KD_{m}}{L}$$

K: equilibrium oil/water partition coefficient (the relative solubility of a solute within a membrane)

$$K = \frac{solubility (oil)}{solubility (water)}$$

D_m: solute diffusion coefficient in the membrane

L: thickness of the membrane

3. Permeation Through Lipid Membranes

Diffusion through a membrane is often empirically correlated by power law expressions:

$$D_m = D_m^0 (M_W)^{-S_m}$$

M_w: molecular weight of the diffusing species

D_m⁰, S_m: coefficients determined by the characteristics of the membrane

$$P = \frac{KD_m^0 (M_w)^{-S_m}}{L} = P_0 K(M_w)^{-S_m} \qquad P_0 = \frac{D_m^0}{L}$$

e.g., permeability of lipid vesicles:

P(water, 18) =
$$5x10^{-3}$$
 cm/s
P(glycerol, 92) = $1.5x10^{-6}$ cm/s
P(glucose, 180) = $6x10^{-8}$ cm/s
P(sucrose, 342) = 0 cm/s

 $M_w < 300$ Da, M_w increases => P decreases $M_w > 300$ Da, excluded from the membrane

Solute permeability is also a function of membrane composition (PC, PS, PE, SM, etc).

3. Permeation Through Lipid Membranes

(2) Charged molecules (electrolyte)

Do not partition into lipid bilayer: K = 0

$$P \Rightarrow 0$$

Ions have very low permeability in lipid membranes.

The low intrinsic permeability of ions underlies the ability of membrane to support an electrical potential difference.

Porous membrane:

Cell membranes and cellular barriers are not perfectly uniform. For example, there are multiple protein ion channels within the membranes.

Hindered transport through a cylindrical pore

$$\lambda = \frac{r_s}{r_p} = \frac{a}{r_p}$$

 $\lambda \rightarrow$ 1: pore walls become an increasingly important obstacle for particle transport

 $\lambda \rightarrow 0$: unbound transport

 $0 < \lambda < 1$: of great biological interest

$0 < \lambda < 1$

The driving force for particle movement through the pore, the gradient of chemical potential, is balanced by drag force acting on the particle:

$$-\nabla \mu = F$$

Chemical potential ~ local solute concentration, c

$$\mu = k_B T \ln c$$

Considering only axial gradient:

$$-rac{\partial \mu}{\partial z} = F$$

$$F = -\frac{k_B T}{c} \cdot \frac{\partial c}{\partial z}$$

On the other hand: $F \sim v(x)$

Drag force $F = f \cdot v(x)$

f: frictional drag coefficient

v(r): velocity of solute

Particle moving in a confined cylindrical pore

$$F = f_{\infty}K[U - Gv]$$

f..: frictional drag coefficient

K: enhanced friction due to the presence of the pore walls

U: local net velocity of the particle with respect to the pore walls

v: velocity of the fluid

G: lag coefficient accounting for the decreased approach velocity of the fluid due to the presence of the pore walls

$$v(x) = U - Gv$$

In unbound fluid:

$$K = 1$$
, $G = 1$
 $F = f_{\infty}[U - v] = f_{\infty}v(x)$

In bound fluid:

$$f_{\infty}K[U - Gv] = -\frac{k_BT}{c} \cdot \frac{\partial c}{\partial z}$$

$$Uc = -\frac{k_B T}{f_{\infty}} \cdot \frac{1}{K} \cdot \frac{\partial c}{\partial z} + Gvc$$

n unbound fluid:
$$K = 1, G = 1$$

$$F = f_{\infty}[U - v] = f_{\infty}v(x)$$
n bound fluid:
$$K > 1, G < 1$$

$$f_{\infty}K[U - Gv] = -\frac{k_BT}{c} \cdot \frac{\partial c}{\partial z}$$

$$Uc = -\frac{k_BT}{f_{\infty}} \cdot \frac{1}{K} \cdot \frac{\partial c}{\partial z} + Gvc$$
Define: $N_z = Uc$ (local particle flux in the axial direction)
$$N_z = -\frac{k_BT}{f_{\infty}} \cdot \frac{1}{K} \cdot \frac{\partial c}{\partial z} + Gvc$$
First term: particle diffusion Second term: bulk fluid movement

When the particle is diffusing in an unbound pore (K=G=1) and stagnant fluid (v=0):

$$N_z = -\frac{k_B T}{f} \cdot \frac{\partial c}{\partial z} = -D \frac{\partial c}{\partial x} = J_x$$
 Fick's first law

Take glucose as an example:

c_{glucose}(extracellular) >> c_{glucose}(intracellular)

$$P_{water} = 10^5 P_{glucose}$$

- Not enough glucose (passive transport) for cell metabolism
- Glucose transport protein (shuttle glucose through the hydrophobic layer)
- The glucose transporter facilitates glucose permeation by periodic changes in conformation.
- Conformational changes occur due to natural thermal fluctuations in the membrane (permits the passage of glucose without the addition of any additional energy.
- Glucose can move in either direction across the bilayer and the net flux will occur from the region of high concentration to low concentration.
- # of glucose transporters is limited. They will be saturated when extracellular glucose concentration is high, which leads to a maximal net rate.

Define the system:

To-be-transported solute: S

Transmembrane carrier protein: C_p

Carrier-solute complex: S-C_p

Transported solute: S*

$$S + C_p \stackrel{k_1}{\rightleftharpoons} S - Cp \stackrel{k_2}{\rightarrow} S * - Cp \stackrel{k_3}{\rightarrow} S^* + C_p$$

If the rate of release of transported solute (k_3) is rapid compare to the rate of conformational change (k_2) , $k_3 >> k_2$

The concentration of solute on the opposite side is negligible, $[S^*] \approx 0$

At equilibrium state:

The flux of solute across the membrane can be calculated as:

$$N_{S^*} = \frac{1}{A} \cdot \frac{d[S^*]}{dt} = k_2[S-Cp]$$

The concentration of $S-C_p$ is assumed constant at equilibrium state:

Rate of formation of S-C_p = Rate of dissociation of S-C_p

$$S + C_p \stackrel{k_1}{\rightleftharpoons} S - Cp \stackrel{k_2}{\rightarrow} S * - Cp \stackrel{k_3}{\rightarrow} S^* + C_p$$

$$k_{1}[S][C_{p}] = k_{-1}[S-Cp] + k_{2}[S-Cp]$$

.nber of transp. $\mathcal{C}_{TOT} = [\mathbf{C_p}] + [\mathbf{S-Cp}]$ The total number of transporter proteins is assumed constant:

$$C_{TOT} = [C_p] + [S-Cp]$$

Combining these equations together:

$$N_{S^*} = k_2[S-Cp] = \frac{k_2C_{TOT}}{1 + \frac{k_{-1} + k_2}{k_1} \cdot \frac{1}{[S]}}$$

Define:
$$V_{max} = k_2 C_{TOT}$$

Define:
$$V_{max} = k_2 C_{TOT}$$

$$K_m = \frac{k_{-1} + k_2}{k_1}$$

$$N_{S^*} = \frac{V_{max} \cdot [S]}{K_m + [S]}$$

 $N_{S^*} = \frac{V_{max} \cdot [S]}{K_{max} + [S]}$ (kinetics of product formation in enzyme-catalyzed reactions)

Assuming transporter protein confirmation change is the rate-limiting step, k₂ << k₁

$$K_{\rm m} \approx \frac{k_{-1}}{k_1} = K_d$$
 (dissociation constant for the binding of solute to transporter)

K_m: "Affinity" of the solute to transporter protein

 $Max(N_{S^*}) = V_{max}$ when [S] is very high (binding is saturated)

Solute concentration [S]

6. Active Transport

- Active transport also involves the participation of transmembrane proteins that bind a specific solute.
- Energy is required to drive the conformational change that leads to solute transport.

e.g., Na+/K+ pump: each cycle 3 Na+ to extracellular; 2 K+ to intracellular

7. Ion Channel

- Ion channels are pore-forming proteins that help establish and control the small voltage gradient across the plasma membrane to enable ion movement across the membrane.
- The close/open state of the channel is regulated by extracellular or intracellular conditions
 - Voltage-gated channel (membrane potential)
 - Ligand-gated channel (ligand molecule binds to extracellular receptor)
 - Mechanosensitive ion channel (mechanical stretching)

8. Ligand-Receptor Mediated Endocytosis

Binding of some ligands to membrane receptor proteins can lead to rapid internalization of both receptor and ligand by a process called endocytosis.

- Early endosome → late endosome → lysosome
- Receptor: recycled or digested (degraded)
- Ligand: escape from endosome or degraded in lysosome