L10. Pharmacokinetics and Biodistribution

NANOZAZI

ABSORPTION

Protein

METABOLISM

STRIBUTION

Tissue bound

Pharmacokinetics

Pharmacodynamics (PD) discusses the effect of a drug on the body

- dose dependent relationship
- molecular mechanism of drug activity

Pharmacokinetics (PK) discusses the pathway of a chemical substance from the time it enters the body to the time it is eliminated. It explains the actions of the drug inside the body by **ADME** which comprises four stages:

Absorption – It is the route by which the substance enters the blood supply.

Distribution – It involves the distribution of the substance throughout the blood supply.

Metabollism – It is the break-down of the substance into its metabolites.

Excretion – It refers to the elimination of the un-metabolised drug and its metabolites from the body.

Pharmacokinetics

PK is to integrate these isolated basic mechanisms into a functional unit.

Build mathematical models that incorporate description of the uptake, distribution, and elimination of a drug in humans or animals.

Use the models to predict the outcome of different dosage regimens on the time course of drug concentration in tissue.

Compartment models

Physiological models

1. One Compartment Model

<u>Simplest model:</u> A drug/nanoparticle is introduced into a single body compartment, from which it is also eliminated.

Assumption: first-order elimination

ANO 2431

V: compartment volume M: mass of drug within the compartment, $M = M_0$ at t = 0c: concentration of drug within the compartment k: first-order elimination constant

1. One Compartment Model

in

Mass balance:

$$\frac{dM}{dt} = -kM$$
$$M = M_0 e^{-kt} \qquad M = c \cdot V$$
$$c = \frac{M_0}{V} e^{-kt} = c_0 e^{-kt}$$

Half-life of drug residence within the compartment: $t_{1/2}$

$$\ln c = \ln \frac{M_0}{V} - kt$$
$$\ln c_0 = \ln \frac{M_0}{V}$$
$$\ln \frac{c_0}{2} = \ln \frac{M_0}{V} - kt_{1/2}$$

n 2

eliminated k, c V, M, c c/c_0 c decreases exponentially with time t

Radioisotope- or fluorescence-labeled drug to measure t_{1/2}

2. One Compartment Model with Absorption

<u>Absorption of drug:</u> (1) Entry of drug through the gastrointestinal tract; (2) leakage into the circulation after subcutaneous injection.

$$\frac{dM}{dt} = k_a D - kM$$

k_a: first-order absorption constant

D: mass of delivered dose that remains in the absorption compartment

$$\frac{dD}{dt} = -k_a D \qquad \qquad D = D_0 \ at \ t = 0$$

 $D = D_0 e^{-kat}$

2. One Compartment Model with Absorption

Central compartment: rapidly perfused tissue (e.g. blood)

Peripheral compartment: slowly perfused tissue (e.g. fat, bone)

Mass balance on central compartment:

$$V_1 \frac{dc_1}{dt} = k_{21} V_2 c_2 - k_{12} V_1 c_1 - k V_1 c_1$$

Mass balance on peripheral compartment:

$$V_2 \frac{dc_2}{dt} = k_{12} V_1 c_1 - k_{21} V_2 c_2$$

V₁,V₂: volume of the central and peripheral compartments, respectively
c₁,c₂: drug concentration in the central and peripheral compartments, respectively
k₁₂,k₂₁: transfer coefficients of drug movement between the two compartments (If the resistance to drug permeation is the same in both direction, k₁₂ = k₂₁ = P·A, permeability X area)
k: first-order elimination constant from the central compartment

 $c_1 = c_{1,0} \text{ at } t = 0$ $c_2 = 0 \text{ at } t = 0$

 $\alpha, \beta = \frac{(k + k_{12} + k_{21}) \pm \sqrt{(k + k_{12} + k_{21})^2 - 4k \cdot k_{21}}}{2}$ $1 = \frac{c_{1,0}(\alpha - k_{21})}{\alpha - \beta}$ $c_1 = Ae^{-\alpha t} + Be^{-\beta t}$ $a - \beta$ $B = \frac{c_{1,0}(k_{21} - \beta)}{\alpha - \beta}$ $A + B = c_{1,0}$ $c_{2} = \frac{V_{1}}{V_{2}k_{21}} \Big[A(\beta - k_{21})e^{-\alpha t} + B(\alpha - k_{12})e^{-\beta t} \Big]$

Elimination from the central compartment occurs in two phases:

A fast phase with $t_{1/2} = \frac{\ln 2}{\alpha}$

Attributed to drug distribution from the central compartment to peripheral compartment

A slow phase with $t_{1/2} = \frac{\ln 2}{\beta}$

Attributed to drug elimination from the central compartment (biological or terminal half-life)

 $\alpha \gg \beta \implies t_{1/2}(\alpha) \ll t_{1/2}(\beta)$

JANK

Calculate $\alpha \& \beta$

- $\alpha \gg \beta$ $e^{-\alpha t} \Longrightarrow 0$, quickly
- $c_{1,\text{late}} = Be^{-\beta t}$

Semi-log graph: $lg(c_{1,late}) = lgB - \beta t$

Residual = $c_1 - c_{1,late} = Ae^{-\alpha t}$

Semi-log graph: $lg(c1 - c_{1,late}) = lgA - \alpha t$

Predicted concentration profile:

24

JANO

USE

urse

4. Example (PK study)

NAN

PNAS 2011, *108,* 10980-10985

4. Example (PK – Two Compartment Model)

4. Example (Biodistribution)

